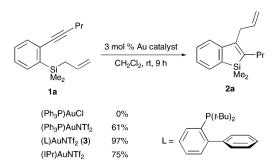

Gold-catalysed intramolecular *trans*-allylsilylation of alkynes forming 3-allyl-1-silaindenes[†]

Takanori Matsuda, Sho Kadowaki, Yoshiyuki Yamaguchi and Masahiro Murakami*

Received (in Cambridge, UK) 25th March 2008, Accepted 23rd April 2008 First published as an Advance Article on the web 20th May 2008 DOI: 10.1039/b804721a

3-Allyl-1-silaindenes are synthesised from alkynes having an allylsilane moiety by a gold-catalysed intramolecular *trans*-allylsilylation reaction.

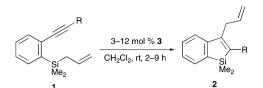
Enyne cycloisomerisation reactions catalysed by electrophilic transition metal complexes have emerged as a powerful and efficient method for the construction of complex cyclic structures.¹ Yamamoto and his co-workers reported an interesting example using an alkyne tethered to an allylsilane moiety.² The intramolecular *trans*-allylsilylation reaction is catalysed by a hafnium complex to afford carbocyclic compounds (eqn (1)). Our interest in the synthesis of silole (silacyclopentadiene) derivatives, which possess unique photophysical and electronic properties,³ led us to examine the reaction of enynes linked by a slicon-containing tether (eqn (2)). Herein, we report a gold(1)-catalysed intramolecular *trans*-allylsilylation reaction of silicon-tethered enynes furnishing silole cores.^{4–6}


Gold complexes possess a highly electrophilic character which often works specifically on alkynes.⁷ Thus, we examined the use of a gold(1) complex to catalyse a reaction of allyl-dimethyl[2-(pent-1-ynyl)phenyl]silane (1a) (Scheme 1).⁸ Whereas a neutral chlorogold(1) complex was ineffective, cationic gold complexes having a bistriflimide counter anion⁹ catalysed an intramolecular *trans*-allylsilylation reaction at room temperature to produce 3-allyl-1-silaindene 2a.¹⁰ The yield of 2a was significantly affected by the ligand. 2-Di-*tert*-butylphosphinobiphenyl was found to be the ligand of choice,

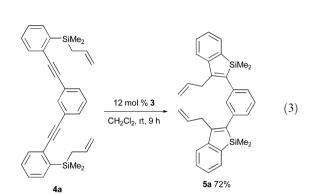
murakami@sbchem.kyoto-u.ac.jp; Fax: +81 (75) 383-2748 † Electronic supplementary information (ESI) available: Experimental procedures and characterisation data for new compounds. See DOI: 10.1039/b804721a giving **2a** in 97% yield.¹¹‡ A gold complex bearing IPr¹² ligand exhibited moderate catalytic activity for the reaction.

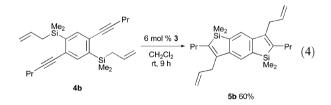
The reaction of various sila-envnes 1 having a range of the alkyne substituents (R) was examined using 3 as the catalyst, and the results are listed in Table 1. Methyl. sec-alkyl. methoxycarbonyl, alkynyl, and aryl groups were all suitable substituents to give the corresponding 2-substituted 3-allyl-1silaindenes 1b-j in moderate to good yield (entries 1-9). Higher catalyst loadings (6-12 mol%) were required to complete the reaction in the case of the cyclopentyl and aryl groups. Notably, a variety of functional groups such as a boryl group and a thienyl group were tolerated in the goldcatalysed reaction. Chloro- and bromoalkyne moieties could be contained in the substituents, producing 2-halo-1-silaindenes 2k and 2l, respectively (entries 10 and 11).¹³ On the other hand, the substrates possessing a hydrogen (i.e., a terminal alkyne), a bulky tert-butyl group, and 2-pyridyl group failed to afford the corresponding 1-silaindenes.

Next, structural variation in the allylsilane moiety was investigated (Table 2). Whereas methylphenylsilylene-bridged sila-enyne **1m** provided 1-silaindene **2m** in good yield (entry 1), diethylsilylene-bridged substrate **2n** was less reactive (entry 2). Methallyl-, crotyl-, and cyclohexenylsilanes **10–q** also gave the corresponding 1-silaindenes **20–q** (entries 3–5). The result with **1p** indicated that the allylation took place regioselectively at the γ position. Reaction of allylgermane **1r** occurred in a similar manner to afford 3-allyl-1-germaindene **2r** in 85% yield (entry 6).

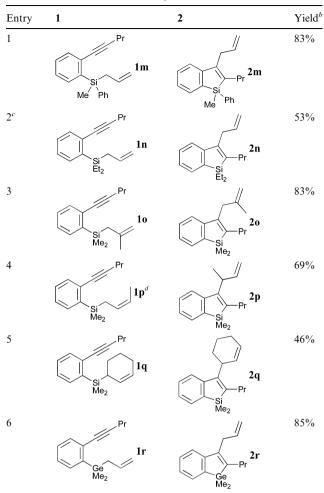

The synthesis of 1-silaindene derivatives possessing extended π -conjugation is exemplified in eqn (3) and (4). *m*-Phenylenebis(1-silaindene) **5a** was obtained by two-fold *trans*-allylsilylation of **4a**. An analogous two-fold allylsilylation successfully proceeded with substrate **4b** to afford 1,5-disila-*s*-indacene **5b**.

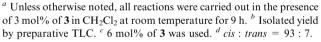
Scheme 1 Gold-catalysed *trans*-allylsilylation of sila-enyne 1a.

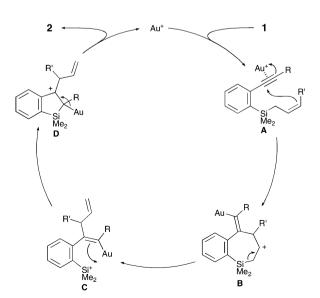

Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan. E-mail:


Table 1 Gold-catalysed *trans*-allylsilylation of sila-enynes 1b-l^a

Entry	1 (R)	mol% Au	2	Yield ^b
1	1b (Me)	3	2b	58%
2	1c (cyclopentyl)	6	2c	71% ^c
3	$1d(CO_2Me)$	3	2d	89%
4	1e $(C \equiv CTIPS^d)$	3	2e	84%
5	$1f(4-MeC_6H_4)$	6	2f	75% ^e
6	1g $(4-(pin)BC_6H_4^f)$	6	2g	81%
7	1h $(3-MeOC_6H_4)$	6	2ĥ	71%
8	1i (2-FC ₆ H ₄)	12	2i	77%
9	1j (5-methyl-2-thienyl)	6	2j	42%
10^g	1k (Cl)	3	2k	79%
11^g	11 (Br)	3	21	77%


^{*a*} Sila-enynes **1b–1** (0.20 mmol) were reacted in the presence of the catalyst **3** (3–12 mol%) in CH₂Cl₂ (2.5 mL) at room temperature for 9 h. ^{*b*} Isolated yield by preparative TLC. ^{*c*} 33% yield with 3 mol% of **3**. ^{*d*} TIPS = triisopropylsilyl. ^{*e*} 13% conversion after 1 h. ^{*f*} Pin = pinacolato (–OCMe₂CMe₂O–). ^{*g*} Reaction time: 2 h.





A mechanism conceivable for the production of 2 from 1 is shown in Scheme 2.¹⁴ Initially, the alkyne moiety of 1 activated by electrophilic Au^+ (in A) induces intramolecular addition of the pendant allyl group to produce seven-membered ring intermediate B. Subsequent ring opening accomplishes allylation to give alkenylgold species C, to which the cationic silyl moiety undergoes electrophilic ring closure. Finally, demetalation from alkylgold species D furnishes silacycle 2 and regenerates Au^+ .¹⁵

The produced 3-allyl-1-silaindenes 2 exhibited fluorescence upon ultraviolet excitation with 250 nm in hexane solution. Silaindene 2a emitted fluorescence at 361 nm with quantum efficiency of 0.07, and **5b** at 408 nm with 0.33. **Table 2** Reaction of 1m-r in the presence of 3^a

Scheme 2 Mechanism of gold-catalysed intramolecular *trans*-allyl-silylation.

In summary, we have developed a new method for the synthesis of 3-allyl-1-silaindenes by a gold-catalysed intramolecular *trans*-allylsilylation reaction of alkynes.

This work was supported by a Grant-in-Aid for Scientific Research for Young Scientist (B) (No. 19750074) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Notes and references

‡ General procedure: to a Schlenk tube containing [2-PhC₆H₄P-(*t*-Bu)₂]AuNTf₂ (**3**, 7.0 mg, 9.0 μmol, 3 mol%) under an argon atmosphere was added a solution of allyldimethyl[2-(pent-1-ynyl)phenyl]silane (**1a**, 72.7 mg, 0.30 mmol) in dichloromethane (0.37 mL). After stirring for 9 h at room temperature, the volatile materials were removed under reduced pressure. The residue was purified by preparative thin-layer chromatography (hexane) to give 3-allyl-1,1-dimethyl-2-propyl-1-silaindene (**2a**, 70.2 mg, 97%).

- Reviews: (a) M. Méndez, V. Mamane and A. Fürstner, Chemtracts, 2003, 16, 397; (b) A. M. Echavarren and C. Nevado, Chem. Soc. Rev., 2004, 33, 431; (c) C. Bruneau, Angew. Chem., Int. Ed., 2005, 44, 2328; (d) S. Ma, S. Yu and Z. Gu, Angew. Chem., Int. Ed., 2006, 45, 200; (e) C. Nieto-Oberhuber, S. López, E. Jiménez-Núñez and A. M. Echavarren, Chem.-Eur. J., 2006, 12, 5916; (f) L. Zhang, J. Sun and S. A. Kozmin, Adv. Synth. Catal., 2006, 348, 2271.
- (a) K.-i. Imamura, E. Yoshikawa, V. Gevorgyan and Y. Yamamoto, J. Am. Chem. Soc., 1998, 120, 5339. For the intermolecular variants, see; (b) S. H. Yeon, J. S. Han, E. Hong, Y. Do and I. N. Jung, J. Organomet. Chem., 1995, 499, 159; (c) N. Asao, E. Yoshikawa and Y. Yamamoto, J. Org. Chem., 1996, 61, 4874; (d) E. Yoshikawa, V. Gevorgyan, N. Asao and Y. Yamamoto, J. Am. Chem. Soc., 1997, 119, 6781; (e) N. Asao, H. Tomeba and Y. Yamamoto, Tetrahedron Lett., 2005, 46, 27.
- 3 (a) T. Matsuda, S. Kadowaki, T. Goya and M. Murakami, Org. Lett., 2007, 9, 133; (b) T. Matsuda, S. Kadowaki and M. Murakami, Chem. Commun., 2007, 2627; (c) T. Matsuda, Y. Yamaguchi and M. Murakami, Synlett, 2008, 561.
- 4 For recent examples of a gold-catalysed intramolecular *cis*-allylsilylation reaction of 4-sila-1,5-enynes, see: (*a*) S. Park and D. Lee, *J. Am. Chem. Soc.*, 2006, **128**, 10664; (*b*) Y. Horino, M. R. Luzung and F. D. Toste, *J. Am. Chem. Soc.*, 2006, **128**, 11364.
- 5 For related intramolecular allyl migration reactions, see: (a) A. Fürstner, F. Stelzer and H. Szillat, J. Am. Chem. Soc., 2001, 123,

11863; (b) A. Fürstner and P. W. Davies, J. Am. Chem. Soc., 2005, 127, 15024; (c) S. Cacchi, J. Organomet. Chem., 1999, 576, 42.

- 6 For cycloisomerisations of 1,7-enynes, see: (a) A. Ochida, H. Ito and M. Sawamura, J. Am. Chem. Soc., 2006, **128**, 16486; (b) S. Porcel and A. M. Echavarren, Angew. Chem., Int. Ed., 2007, **46**, 2672; (c) N. Cabello, C. Rodríguez and A. M. Echavarren, Synlett, 2007, 1753.
- 7 Reviews: (a) A. Hoffmann-Röder and N. Krause, Org. Biomol. Chem., 2005, **3**, 387; (b) E. Jiménez-Núñez and A. M. Echavarren, Chem. Commun., 2007, 333; (c) D. J. Gorin and F. D. Toste, Nature, 2007, **446**, 395; (d) A. Fürstner and P. W. Davies, Angew. Chem., Int. Ed., 2007, **46**, 3410; (e) Y. Yamamoto, J. Org. Chem., 2007, **72**, 7817; (f) A. S. K. Hashmi, Chem. Rev., 2007, **107**, 3180.
- 8 A reaction in the presence of HfCl₄ (CH₂Cl₂, 0 °C) resulted in a complex mixture. No reaction occurred in the presence of PtCl₂ (toluene, 80 °C).
- 9 N. Mézailles, L. Ricard and F. Gagosz, Org. Lett., 2005, 7, 4133
- 10 Siloxane 6 was formed in 23% yield in addition to 2a (61%) in the case of (Ph₃P)AuNTf₂

- 11 Unlike the previous Al- and Hf-catalysed *trans*-allylsilylation reaction of alkynes, the complex **3** failed to promote an intermolecular reaction of allyldimethyl(phenyl)silane with pent-1-ynylbenzene.
- 12 IPr = Bis(2,6-diisopropylphenyl)imidazol-2-ylidene.
- 13 Dehalogenated 1-silaindene 7 (*ca.* 14%) was also isolated as the side product. Performing the reaction for a longer period of time than 2 h increased the formation of 7

- 14 It is premature for us to argue about the mechanism in more detail. A different mechanism can be also assumed to operate depending on the substrates employed.
- 15 For a related silyldeauration process, see: I. Nakamura, T. Sato, M. Terada and Y. Yamamoto, Org. Lett., 2007, 9, 4081.